The top challenges facing today’s embedded system designer are attaining product specification and performance goals, achieving on-time market launch and meeting cost targets. Microchip’s 16-bit microcontroller and digital signal controller families deliver the performance, peripherals, software and hardware development tools to meet these objectives.

The 16-bit family is comprised of several subfamilies ranging from 4 KB to 512 KB of Flash in 14 to 144 pins, with packages as small as 4 × 4 mm. The PIC24F family offers a cost-effective, low-power step up in performance, memory and peripherals for many applications that are pushing the envelope of 8-bit microcontroller capabilities. The PIC24F family features devices with eXtreme Low Power (XLP) technology, 16 MIPS performance, rich analog integration and drivers for segmented or graphical displays. For more demanding applications, the PIC24E family offers up to 70 MIPS performance and includes a robust peripheral set including PWMs, timers, CAN and op amps.

The dsPIC® family of Digital Signal Controllers (DSCs) include a fully implemented Digital Signal Processor (DSP) engine, including a single-cycle 16 × 16 MAC and 40-bit accumulators, for enhanced math capabilities to execute and control high-speed precision digital control loops with the simplicity of a traditional microcontroller. Microchip’s dsPIC DSCs achieve up to 70 MIPS performance and include features for high-efficiency motor control, platinum-rated digital power supplies and other embedded control applications, including operation up to 150°C and support for both 3V and 5V applications. All 16-bit families have the same instruction set, basic peripherals and common pinouts and share the same development tool ecosystem for easy migration.

Performance
- PIC24 MCUs with XLP technology provide the lowest power and longest battery life
- dsPIC33 DSCs offer real-time response and highest performance
- Perform in harsh environment up to 150°C
- Deterministic interrupt response for real-time control
- Single-cycle bit manipulation and multiply
- High-endurance, flexible and secure Flash
- Fast DMA without cycle stealing

Software
- USB, graphics, crypto, smart card, file I/O and Wi-Fi® stacks
- Motor control software, models and tuning guides
- PMBus™ software and digital power compensator library
- DSP math function library and digital filter design tools
- Class B safety peripherals and library for IEC 60730
- Hundreds of code examples to setup peripherals and functions

Peripherals
- Rich analog integration – Analog-to-Digital Converters (ADCs), Digital-to-Analog Converters (DACs) and op amps
- Communications – UART, IrDA, SPI, I²S™, I²C™, USB, CAN, LIN and SENT
- Fast and flexible PWMs and timers
- Motor control PWM, precision ADC and QEI
- Digital power peripherals for low-latency control loops
- Optimized peripherals for real-time response
- Drivers for segmented or graphical displays
- Crypto engine for data security

Tools
- Supported by MPLAB® X IDE and XC16 compliers
- MPLAB Code Configurator for easy setup and configuration of peripherals and I/O
- Starter kits and low-cost Microstick boards
- Flexible Explorer 16 Development Board
- Reference designs for digital power conversion and lighting
Flexible Integrated Peripherals

Microchip offers a rich set of high-performance peripherals that integrate seamlessly with customer application and enable solution with reduced costs and time. The 16-bit family offers key communication and control peripherals like SPI, UART, CAN, PWM, Timers and I^C, as well as specialized peripherals for USB, graphics, motor control and digital power. With intelligent analog peripherals, you can integrate analog functions such as high-performance ADCs, DACs and op amps into your applications providing simple-to-use interfaces that ease analog design. In addition, core independent peripherals such as CLC, PTG and crypto enable higher levels of integration and flexibility.

PIC24 and dsPIC33 Family Block Diagram
eXtreme Low Power (XLP) Solutions

Microchip’s XLP devices bring together the design and process technologies needed to address today’s low-power applications. With sleep currents down to 10 nA and industry-leading integration including USB, touch, crypto and LCD drivers, XLP products can help extend the life of your battery-powered application.

www.microchip.com/XLP

Intelligent Analog Integration

By integrating high-precision analog peripherals into the PIC® MCU, you can achieve simplified design cycles, board size reduction, faster throughput and improved signal integrity. Products include 16-bit Delta-Sigma ADC, 10 Msps ADC, DACs, and op amps to make it easy to interface to a wide variety of sensors including portable medical equipment and industrial sensors.

www.microchip.com/intelligentanalog

Secure Data

Embedded applications in the internet-connected world demand secure data and long battery life. PIC MCUs ensure data integrity without sacrificing power consumption through an integrated hardware crypto engine, random number generator for unique key creation and secure key storage for applications such as IoT sensor nodes and access control systems.

www.microchip.com/lowpowercrypto

Driving Displays and Touch

For applications that need compelling and intuitive user interfaces, our portfolio includes devices with integrated low-power segmented LCD drivers or colorful graphical display drivers with hardware acceleration. Additionally, Microchip offers a broad portfolio of touch solutions for resistive and projected capacitive applications that make it easy for you to integrate touch-sensing interfaces. These hardware peripherals are supported by free software libraries to quickly integrate the touch and display functions into your application with a single microcontroller.

www.microchip.com/graphics
www.microchip.com/LCD
www.microchip.com/touch

Easy Connectivity

Whether you are considering adding wired or wireless connectivity to your application, Microchip supports a wide variety of communication protocols. It’s easy to couple the PIC24 or dsPIC33 devices with Microchip’s certified Bluetooth® or Wi-Fi modules. Peripherals for CAN, LIN, SENT and USB are integrated onto our 16-bit devices with supporting free software libraries.

www.microchip.com/connectivity

Advanced Motor Control

The dsPIC33 motor control families feature a high-performance core with specialized motor control peripherals. The devices are supported with free software libraries and motor control algorithms. Our flexible motor control development boards support a wide variety of motors and help reduce development time.

www.microchip.com/motor

Efficiency for Digital Power and Lighting

The dsPIC33 “GS” DSC family is optimized for high performance on advanced algorithms for improved efficiency over widely varying load conditions. These devices feature dedicated peripherals such as fast ADCs and PWMs for digital power conversion and LED or HID lighting applications.

www.microchip.com/power

System Level Integration

PIC24 MCUs and dsPIC33 DSCs perform under pressure, with options that operate up to 5V for increased noise immunity and robustness. Additionally, many devices are rated for operation up to 125°C or 150°C ambient temperature for the most extreme automotive and industrial applications, including AEC-Q100 Grade 0 qualification. For safety-critical applications, the products include memory integrity check and error correction, backup oscillators and fault detection. The certified Class B software stack helps to simplify regulatory compliance.

www.microchip.com/hightemp
www.microchip.com/classb
PIC24 MCUs with eXtreme Low Power

eXtreme Low Power (XLP) Technology
Energy conservation is becoming essential for the growing number of electronic applications. Products with Microchip's XLP technology offer the industry’s lowest sleep currents, where most applications spend 90–99% of their time. These devices are ideal for a variety of applications including portable medical devices, wearables/fitness monitors, remote controls, wireless sensors, asset tracking, thermostats, energy monitoring, security systems and IoT sensor nodes.

- Low sleep currents with flexible wake-up sources
 - Sleep current down to 9 nA
 - Brown-Out Reset (BOR) down to 45 nA
 - Real-time clock down to 400 nA
- Battery-friendly features
 - Enable battery lifetime greater than 20 years
 - Low-power supervisors for safe operation (BOR, WDT)
- V_{BAT} battery back-up
 - Automatic switch-over upon loss of V_{DD}
 - Maintains Real-Time Clock/Calendar (RTCC) and two user registers
 - Powered separately from 1.8–3.6V source (coin cell)
- Efficient instruction set; 90% single-cycle instruction
 - Active mode currents as low as 150 µA/MHz

XLP Battery Life Estimator
The XLP Battery Life Estimator is a free software utility to aid you in developing low-power applications. The tool estimates average current consumption and battery life. The utility allows you to select the target device, battery type, the application’s operating conditions (such as voltage and temperature) and model the active and power-down times for their application. The tool comes preloaded with specifications of Microchip’s PIC microcontrollers featuring nanoWatt XLP technology and commonly used batteries in embedded applications.

Development Tools

16-bit XLP Development Board (DM240311)
This board is designed as true platform for low-power development with flexible power sources including AAA, CR2032, energy harvesting, USB or 9V power supply. It includes current measurement terminals and ships with PIC24F16KA102 and can be used with other 28-pin XLP devices.

LCD Explorer Development Board (DM240314)
This board showcases the PIC24FJ128GA310 family with segmented LCD driver. The board operates from two AAA batteries and includes circuitry for V_{BAT} battery back-up from a coin cell battery.

MPLAB Starter Kit for PIC24F Intelligent Integrated Analog (DM240015)
Featuring the PIC24FJ128GCO10 family, this kit is ideal for designing low-power sensor networks. It includes on-board sensors for light, temperature and touch. The analog header makes it easy to add your custom sensors for a complete prototype.

MPLAB REAL ICE In-Circuit Emulator Power Monitor (AC244008)
This add-on board enables low-power monitoring and debugging. Breakpoints indicate when current exceeds a specified threshold and provides a graph of current, voltage and time versus code execution.

Application Notes

- AN1861: Bluetooth Smart Communication Using Microchip’s RN4020 Module and 16-bit PIC® MCU
- AN1556: Blood Pressure Meter Design Using Microchip’s PIC24F Microcontroller and Analog Devices
- AN1416: Low Power Design Guide: A Single Source for Low Power Consumption from the Viewpoint of the MCU
- AN1267: nanoWatt XLP Technology: An Introduction to Microchip’s Low-Power Devices

Featured XLP Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Flash (KB)</th>
<th>Pin Count</th>
<th>Sleep (nA)</th>
<th>Deep Sleep (nA)</th>
<th>WDT (nA)</th>
<th>32 kHz SOSC/RTCC (nA)</th>
<th>Active µA/MHz</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC24F16KL402</td>
<td>4–16</td>
<td>14/20/28</td>
<td>30</td>
<td>–</td>
<td>210</td>
<td>690</td>
<td>150</td>
<td>MSSP</td>
</tr>
<tr>
<td>PIC24FJ64GB004</td>
<td>32–64</td>
<td>28/44</td>
<td>200</td>
<td>20</td>
<td>200</td>
<td>500</td>
<td>250</td>
<td>USB</td>
</tr>
<tr>
<td>PIC24FJ128GB204</td>
<td>64–128</td>
<td>28/44</td>
<td>380</td>
<td>18</td>
<td>240</td>
<td>300</td>
<td>178</td>
<td>Crypto, USB, V_{BAT}</td>
</tr>
<tr>
<td>PIC24FJ128G310</td>
<td>64–128</td>
<td>64/100</td>
<td>330</td>
<td>10</td>
<td>270</td>
<td>400</td>
<td>150</td>
<td>LCD, V_{BAT}</td>
</tr>
<tr>
<td>PIC24FJ128GCO10</td>
<td>64–128</td>
<td>64/100</td>
<td>330</td>
<td>10</td>
<td>270</td>
<td>400</td>
<td>150</td>
<td>Adv. Analog, LCD, USB, V_{BAT}</td>
</tr>
</tbody>
</table>

www.microchip.com/xlp
PIC MCUs with Intelligent Analog

Analog design is difficult and consumes precious development time. Microchip’s intelligent PIC MCUs integrate analog functions such as high-performance ADCs, DACs and op amps, providing simple-to-use interfaces that ease analog design. This single-chip solution enables reduced system noise and provides higher throughput, while dramatically reducing design time and cost.

Benefits of Analog Integration

- Eliminates the complicated task of debugging the noise sources that reduce analog signal integrity
- Removes the bottleneck of communicating to the microcontroller from analog
- Provides consistent analog performance that can be leveraged from design to design, eliminating analog design rework
- Through intelligent connections made inside the chip, the analog is fully controlled by software
- Benefits include a simplified design cycle, board space savings, faster throughput and better signal integrity
- Intelligent analog leads to lower-cost designs that are brought to market faster

Target Applications

- Environmental quality sensors
- Portable medical equipment (glucose meters, portable ECGs, pulse oximeters, blood pressure meters)
- Industrial equipment (gas sensors, handheld multi-meters, lab instrumentation, e-meters, sensor arrays)

Featuring the PIC24FJ128GC010 Family with Intelligent Analog

The PIC24 “GC” family integrates a precision 16-bit ADC, high-speed 12-bit ADC, DAC and op amps with interconnect fabric providing the most analog integration available in a PIC MCU. With on-chip USB and segmented LCD driver, this family is ideal for portable devices with user interfaces.

- 16-bit Delta-Sigma ADC
- 12-bit 10 MSPS Pipeline ADC
- 10-bit 1 MSPS DAC
- Dual op amps
- eXtreme Low Power: 18 nA deep sleep, 180 μA/MHz Run

Development Tools

MPLAB® Starter Kit for PIC24F Intelligent Integrated Analog (DM240015)

This kit includes an analog header for clean analog signals and plugs into breadboards. The board includes connections for microphone, headphones as well as on-board light and temperature sensors. The segmented display showcases custom icons and a scrolling banner. The board also includes cap touch buttons, USB connection and easy connection for RF modules.

Featured Intelligent Analog PIC MCU Families

<table>
<thead>
<tr>
<th>Product Family</th>
<th>Pin Count</th>
<th>Flash (KB)</th>
<th>ADC</th>
<th>DAC</th>
<th>Op Amp</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC24F16KM204</td>
<td>20–44</td>
<td>8–16</td>
<td>22 × 12-bit (100 ksps)</td>
<td>2 × 8-bit</td>
<td>2</td>
<td>Internal voltage reference, CLC, MCCP SCCP (16-bit PWM), CTMU, three comparators, 3V and 5V operation</td>
</tr>
<tr>
<td>PIC24FJ128GC010</td>
<td>64–100</td>
<td>64–128</td>
<td>2 × 16-bit Delta-Sigma ADC 50 × 12-bit ADC (10 Msps)</td>
<td>2 × 10-bit</td>
<td>2</td>
<td>Analog interconnect switch matrix, internal voltage reference, CTMU, PWM, USB, LCD, mTouch® technology</td>
</tr>
<tr>
<td>dsPIC33EP64GS506</td>
<td>28–64</td>
<td>16–64</td>
<td>22 × 12-bit with 5 S/H (3.25 Msps)</td>
<td>2 × 12-bit</td>
<td>2</td>
<td>1.04 ms PWM resolution, four rail-to-rail comparators with dedicated DAs for each analog comparator, two oversampling filters for increased resolution</td>
</tr>
<tr>
<td>dsPIC33EP256GP506</td>
<td>28–64</td>
<td>32–256</td>
<td>1.1 Msps 10-bit with 4 S/H or 500 kbps 12-bit with 1 S/H (configurable)</td>
<td>–</td>
<td>3</td>
<td>Flexible ADC trigger sources, CTMU for temperature or touch, CAN, Peripheral Trigger Generator (PTG), four comparators</td>
</tr>
</tbody>
</table>
Hardware Crypto Engine
With the Internet of Things growing at a rapid rate, protecting embedded data and extending battery life are not an option, but a necessity. Devices in Microchip’s PIC24F “GB2” family are the first PIC MCUs to offer an integrated hardware crypto engine along with extreme low power performance. This new family also features a True Random Number Generator (RNG) and One-Time-Programmable (OTP) key storage for protecting data in embedded applications. For connectivity, the “GB2” family integrates USB for device or host connections as well as a UART with ISO7816 support, which is helpful for smart card applications.

Key Features

Cryptographic Engine
- AES engine with 128, 192 or 256-bit key
- DES/Triple DES (TDES) engine
- Encryption, decryption and authentication
- True Random Number Generator (RNG)
- Achieve a higher level of data security with unique key
- One-Time-Programmable (OTP) memory for secure key storage
- Once written, keys cannot be read or overwritten by software
- Core Independent Peripheral – offloads CPU to save power and headroom

eXtreme Low Power Features
- 18 nA sleep, 180 µA/MHz Run
- Enables integrity of data without sacrificing power consumption
- VBAT allows the device to transition to a backup battery

Connection to USB or Wireless Protocols
- Integrated USB 2.0 device, host, OTG
- Easy connection to certified modules for Wi-Fi, ZigBee®, Sub-GHz and Bluetooth Low Energy

Alternatively, you can add crypto functions in software to any PIC24 or dsPIC33 device using the free software found in the Microchip Libraries for Applications (MLA) download at www.microchip.com/MLA.

Target Applications

Industrial
- Security door locks
- Access control systems
- Security cameras
- POS terminals
- Smart card readers
- Heat/gas meters
- IoT sensor nodes

Computer
- PC peripherals
- Printers
- Portable accessories

Medical/Fitness
- Pedometers
- Wearable fitness
- Handheld devices

Application Note
AN1861: Bluetooth Smart Communication Using Microchip’s RN4020 Module and 16-bit PIC Microcontroller
Learn how low-power Bluetooth connectivity is an ideal match with the XLP PIC24 microcontrollers, especially those with integrated crypto engine for adding another layer of data protection for internet-connected applications. Bluetooth Low Energy or Bluetooth Smart has evolved to support applications that need simple command and control or quick status from a sensor. This low-power protocol is ideal for connecting local embedded applications to the cloud through a smartphone or tablet.

Development Tools
The PIC24FJ128GB204 Plug-In Module (MA240037) plugs into the Explorer 16 Development Board (DM240001). To add low-power Bluetooth Smart connection, simply add the RN4020 Bluetooth Low Energy PICtail™/PICtail Plus Daughter Card (RN-4020-PICTAIL). This flexible development system makes it easy to customize for various other wired or wireless connectivity options including USB, Wi-Fi or ZigBee.

Featured Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Flash (KB)</th>
<th>Pins</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC24FJ128GB204</td>
<td>128</td>
<td>44</td>
<td>TQFP, QFN</td>
</tr>
<tr>
<td>PIC24FJ128GB202</td>
<td>128</td>
<td>28</td>
<td>SOIC, SSOP, QFN, SPDIP</td>
</tr>
<tr>
<td>PIC24FJ64GB204</td>
<td>64</td>
<td>44</td>
<td>TQFP, QFN</td>
</tr>
<tr>
<td>PIC24FJ64GB202</td>
<td>64</td>
<td>28</td>
<td>SOIC, SSOP, QFN, SPDIP</td>
</tr>
</tbody>
</table>
Many 16-bit designs incorporate modern user interfaces to increase the usability, functionality and look of end products. More sophisticated displays and touch interfaces create higher impact designs, yet they must be cost effective and easy to integrate. Microchip’s solutions allow for driving segmented or graphical displays with a single chip and offer integrated peripherals for touch buttons.

Segmented LCD Displays

The PIC24FJ128GA310 and PIC24FJ128GC010 families feature integrated segmented display drivers with up to 480 segments. Key advantages include:

- Direct drive of inexpensive, low-power displays
- Integrated analog for sensor applications like temperature sensing in thermostats
- Integrated touch sensing function for buttons or sliders

Graphical Displays

The PIC24FJ256DA210 family features integrated graphics acceleration and a display controller to directly drive displays up to 4.3" WQVGA with 480 × 272 resolution. This “DA” family includes:

- Dedicated graphics clock for a continuous, flicker-free display
- On-chip display controller provides direct interface to TFT, STN and OLED displays
- Easy to use graphics processing units for hardware acceleration allow for moving and copying rectangles, decompressing images and rendering text without CPU intervention
- Integrated color look-up table and 96 KB frame buffer support up to 8 bpp QVGA with internal memory

Touch Buttons: Keys and Sliders

Many PIC24 MCUs and dsPIC DSC products include touch sensing capability for implementing keys or sliders as an alternative to traditional push button switches using CVD or CTMU technology. This enables more modern and stylish designs, lower manufacturing costs and increased reliability.

- Longer battery life with xTreme Low Power MCUs
- Sensing through metal, plastic or glass
- High noise immunity and low emissions
- Free mTouch sensing solutions software library is available as part of MLA Software Legacy Version

Development Tools

LCD Explorer Development Board (DM240314)

The LCD Explorer Development Board provides an ideal platform to evaluate a MCU with a × 8 Common LCD Driver on a 38 segment × 8 common LCD display.

PIC24FJ256DA210 Development Kit (DV164039)

This kit bundles the PIC24FJ256DA210 Development Board (DM240312), a 3.2” Truly 240 × 320 TFT Display Board (AC164127-4), three Graphics Display Prototype Boards (AC164139), the MPLAB ICD 3 Debugger (DV164035) and also includes a USB Cable and accessories.

Remote Control Demo Board (DM240315-2)

This board integrates graphics, mTouch technology, USB and RF4CE into a single demo. It features the PIC24FJ256DA210 MCU, a 3.5" Graphical TFT LCD with resistive touch screen, capacitive touch keys with plastic overlay, an MRF24J40 2.4 GHz transceiver and a ZENA™ wireless adapter.

Software and Application Notes

FREE Microchip Graphics Library

The Microchip Graphics Library is highly modular, easy to use and has an open documented interface for driver or controller support. The library supports the following features:

- Pre-made graphics objects
- Multiple fonts and languages
- User interface for mTouch sensing
- Buttons, charts, check boxes, scroll bars, list boxes, images and basic animation
- Download as part of the MLA software at www.microchip.com/MLA

Visual Graphics Display Designer by VirtualFab (SW500190)

Visual Graphics Display Designer (VGDD) is a powerful visual design tool that provides a quick and easy way of creating Graphic User Interface (GUI) screens for graphical interface applications on Microchip MCUs. This development environment, developed by our partner VirtualFab, fully utilizes the Microchip graphics library in MLA as well as Microchip’s graphics development boards.

Application Notes

- **AN1428:** Segmented LCD Biasing & Contrast Control Methods
- **AN1368:** Developing Graphics Applications Using an MCU with Integrated Graphics Controllers
- **AN1478:** mTouch Sensing Solutions Acquisition Methods Capacitive Voltage Divider

www.microchip.com/graphics
Connectivity

The PIC24 MCUs and dsPIC33 DSC products include a wide range of integrated connectivity peripherals as well as support for many wired and wireless communication protocols. Many of these communication libraries, such as USB and Wi-Fi, are integrated into the Microchip Libraries for Applications (MLA) which can be downloaded at www.microchip.com/MLA.

CAN, LIN and SENT

Many of the dsPIC DSCs and PIC24 MCUs include an integrated CAN peripheral which is ideal for applications requiring robust communications with a high-speed, reliable industry standard protocol. Vector CANbedded™ and osCAN™ development solutions support PIC24 MCU and dsPIC DSC products with embedded CAN controllers.

LIN support is integrated into many products for low-cost, single-wire serial communication for automotive applications.

The new dsPIC33EV family also includes SENT for automotive sensing. The dsPIC33EV 5V CAN-LIN Starter Kit (DM330018) contains data ports for CAN, LIN and SENT, a self-contained USB programming/debug interface, and an expansion footprint for flexibility in application hardware development.

A CAN/LIN PICtail Plus Daughter Board (AC164130-2) is available to plug into the Explorer 16 (DM240001) for developing embedded CAN or LIN applications. This must be used with a processor Plug-In Module (PIM) for a compatible PIC24 MCU or dsPIC DSC product.

IrDA®

The IrDA standard is an inexpensive method for providing wireless point-to-point communication. Through Application Note AN1071, Microchip’s free IrDA stack is available to support 16-bit MCUs with integrated IrDA support, enabling a cost-effective wireless connection with plenty of computing power left for other tasks.

PMBus

The PMBus protocol standard operations over an I²C physical layer and was developed to enable easy digital management of power supplies. The protocol allows for reading values from a power supply such as measured voltage and current parameters, temperatures and fan speeds as well as writing commands to control the operation of the power supply. The dsPIC “GS” family of DSCs supports the PMBus protocol along with many other dsPIC DSCs and PIC24 MCUs. A PMBus stack is available free from Microchip for use with the dsPIC “GS” family of DSCs.

Wireless

Microchip offers a wide range of wireless modules ranging from Wi-Fi, Bluetooth, Bluetooth Smart and various Personal Area Networks. These fully certified surface-mount modules allow you to quickly and seamlessly add wireless connectivity to your applications. The wireless modules allow you to bypass costly and timely RF design, Bluetooth certification and governmental certifications to get your designs to market faster.

For wireless sensors and other battery-operated applications, the eXtreme Low Power PIC24 MCUs are ideal companions to Microchip’s RN4020 Bluetooth Low Energy Wireless Module, creating low-power wireless networks. Together these devices allow for connection to Bluetooth-enabled devices, making it easy to add internet connection to your embedded application for remote command and control. Application Note AN1861 describes the hardware and software needed to pair an XLP PIC24 to the RN4020 Bluetooth Low Energy Module.

USB

There are many PIC24 MCU and dsPIC DSC families with integrated USB which include support for device, host and On-The-Go (OTG) functionality. These products are supported by the dsPIC DSC USB Starter Kit (DM330012) as well as the Explorer 16 Development Board (DM240001) with USB PICtail Plus Daughter Card (AC164131) and one of the USB Processor Plug-In Modules (PIMs).

Microchip’s free USB framework includes USB software libraries as well as a comprehensive set of host and device drivers including Human Interface Device (HID) class for user interfaces, and Mass Storage Device (MSD) class for memory devices as well as CDC, PHDC, custom, audio, printer and demo code including thumb drive bootloader, and printer host. The USB libraries, drivers and demo code are all available with the Microchip Libraries for Applications download.

www.microchip.com/connectivity
16-bit Motor Control Products

- High-performance dsPIC DSC core with DSP instructions for precise control
 - Variable speed with constant torque using PI controllers
 - Field oriented control (FOC) for greater efficiency
- 5V 70 MIPS dsPIC DSC core for harsh environments
- High-performance on-chip op amps
- Intelligent, high-speed ADC
- Algorithms and application notes for
 - BLDC, PMSM, ACIM
 - Sensorless control
 - Field-oriented control
 - Certified class B safety software
- Dual motor control with FOC control for each motor
- Multiple package options, ranging from 28 to 144 pins
- Scalable motor control tools with low- and high-voltage options
- Motor control PWM: up to 14 outputs
 - Up to seven duty cycle generators
 - Independent or complementary mode
 - Programmable dead time settings
 - Edge- or center-aligned PWMs
 - Manual output override control, up to 10 fault inputs
 - ADC samples triggered by PWM module
- Quadrature encoder interface module
 - Up to two modules
 - Phase A, Phase B and index pulse input
- High current sink/source

Software and Application Notes

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>Algorithm</th>
<th>App Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stepper Motor</td>
<td>Closed-Loop Microstepping</td>
<td>AN1307</td>
</tr>
<tr>
<td></td>
<td>Sensored</td>
<td>AN957</td>
</tr>
<tr>
<td></td>
<td>Sensored Sinusoidal</td>
<td>AN1017</td>
</tr>
<tr>
<td></td>
<td>Sensorless BEMF</td>
<td>AN901</td>
</tr>
<tr>
<td></td>
<td>Sensorless Filtered BEMF with Majority Detect</td>
<td>AN1160</td>
</tr>
<tr>
<td>BLDC and PMSM</td>
<td>Sensorless Dual-Shunt FOC with SMO Estimator and Field Weakening</td>
<td>AN1078</td>
</tr>
<tr>
<td></td>
<td>Sensorless Dual-Shunt FOC with SMO and PFC</td>
<td>AN1208</td>
</tr>
<tr>
<td></td>
<td>Sensorless Dual-Shunt FOC with PLL Estimator and Field Weakening</td>
<td>AN1292</td>
</tr>
<tr>
<td></td>
<td>Sensorless Single-Shunt FOC with SMO Estimator and Field Weakening</td>
<td>AN1299</td>
</tr>
<tr>
<td>AC Induction Motor</td>
<td>Open-Loop V/F</td>
<td>AN1106</td>
</tr>
<tr>
<td></td>
<td>Closed-Loop Vector Control</td>
<td>AN984</td>
</tr>
<tr>
<td></td>
<td>Sensorless Dual-Shunt FOC with PLL Estimator</td>
<td>AN980</td>
</tr>
<tr>
<td></td>
<td>Sensorless Dual-Shunt FOC with PLL Estimator and Field Weakening</td>
<td>AN1162</td>
</tr>
<tr>
<td></td>
<td>Sensorless Dual-Shunt FOC with PLL Estimator and Field Weakening</td>
<td>AN1206</td>
</tr>
<tr>
<td>Other</td>
<td>PFC</td>
<td>AN1229</td>
</tr>
<tr>
<td></td>
<td>Class B Safety Software (IEC 60730)</td>
<td>AN894</td>
</tr>
<tr>
<td></td>
<td>Motor Control Sensor Feedback Circuits</td>
<td>AN898</td>
</tr>
<tr>
<td></td>
<td>MOSFET Driver Selection</td>
<td>AN1332</td>
</tr>
<tr>
<td></td>
<td>Current Sensing Circuit Concepts and Fundamentals</td>
<td>AN1332</td>
</tr>
</tbody>
</table>

Featured Motor Control Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Operating Voltage (V)</th>
<th>MIPS</th>
<th>Pins</th>
<th>Flash (KB)</th>
<th>RAM (KB)</th>
<th>DMA Ch.</th>
<th>Input Capture</th>
<th>Output Compare/Std. PWM</th>
<th>MC/PWM</th>
<th>QEI</th>
<th>Internal Op Amps</th>
<th>ADC10/ch</th>
<th>ADC12/ch</th>
<th>0.5 MSPS</th>
<th>UART</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsPIC33EP512GM710</td>
<td>3.3</td>
<td>70</td>
<td>100/121</td>
<td>128–512</td>
<td>16–48</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>12 Ch 2</td>
<td>1</td>
<td>2/49 Ch 4</td>
<td>2/49 Ch 4</td>
<td>2/49 Ch 4</td>
<td>2/49 Ch 4</td>
<td>4</td>
</tr>
<tr>
<td>dsPIC33EP512GM706</td>
<td>3.3</td>
<td>70</td>
<td>64</td>
<td>128–512</td>
<td>16–48</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>12 Ch 2</td>
<td>1</td>
<td>2/30 Ch 4</td>
<td>2/30 Ch 4</td>
<td>2/30 Ch 4</td>
<td>2/30 Ch 4</td>
<td>4</td>
</tr>
<tr>
<td>dsPIC33EP512GM604</td>
<td>3.3</td>
<td>70</td>
<td>44</td>
<td>128–512</td>
<td>16–48</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>12 Ch 2</td>
<td>1</td>
<td>2/18 Ch 4</td>
<td>2/18 Ch 4</td>
<td>2/18 Ch 4</td>
<td>2/18 Ch 4</td>
<td>4</td>
</tr>
<tr>
<td>dsPIC33EP512MC506</td>
<td>3.3</td>
<td>70</td>
<td>64</td>
<td>32–512</td>
<td>4–48</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6 Ch 1</td>
<td>3</td>
<td>1/6 Ch 2</td>
<td>1/6 Ch 2</td>
<td>1/6 Ch 2</td>
<td>1/6 Ch 2</td>
<td>2</td>
</tr>
<tr>
<td>dsPIC33EP512MC504</td>
<td>3.3</td>
<td>70</td>
<td>44</td>
<td>32–512</td>
<td>4–48</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6 Ch 1</td>
<td>3</td>
<td>1/9 Ch 2</td>
<td>1/9 Ch 2</td>
<td>1/9 Ch 2</td>
<td>1/9 Ch 2</td>
<td>2</td>
</tr>
<tr>
<td>dsPIC33EP512MC502</td>
<td>3.3</td>
<td>70</td>
<td>28</td>
<td>32–512</td>
<td>4–48</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6 Ch 1</td>
<td>3</td>
<td>1/11 Ch 2</td>
<td>1/11 Ch 2</td>
<td>1/11 Ch 2</td>
<td>1/11 Ch 2</td>
<td>2</td>
</tr>
<tr>
<td>dsPIC33EV256MC106</td>
<td>5</td>
<td>70</td>
<td>64</td>
<td>32–256</td>
<td>4–16</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6 Ch 0</td>
<td>4</td>
<td>1/36 Ch 2</td>
<td>1/36 Ch 2</td>
<td>1/36 Ch 2</td>
<td>1/36 Ch 2</td>
<td>2</td>
</tr>
<tr>
<td>dsPIC33EV256MC104</td>
<td>5</td>
<td>70</td>
<td>44</td>
<td>32–256</td>
<td>4–16</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6 Ch 0</td>
<td>4</td>
<td>1/24 Ch 2</td>
<td>1/24 Ch 2</td>
<td>1/24 Ch 2</td>
<td>1/24 Ch 2</td>
<td>2</td>
</tr>
<tr>
<td>dsPIC33EV256MC102</td>
<td>5</td>
<td>70</td>
<td>28</td>
<td>32–256</td>
<td>4–16</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6 Ch 0</td>
<td>3</td>
<td>1/11 Ch 2</td>
<td>1/11 Ch 2</td>
<td>1/11 Ch 2</td>
<td>1/11 Ch 2</td>
<td>2</td>
</tr>
</tbody>
</table>
Motor Control Development Solutions

Development Tools

Motor Control Library for dsPIC33F/dsPIC33E

The Motor Control Library contains function blocks that are optimized for the dsPIC33F and dsPIC33E DSC families. All functions in this Motor Control Library have input(s) and output(s), but do not access any of the DSC peripherals. The library functions are designed to be used within an application framework for realizing an efficient and flexible way of implementing a motor control application.

Motor Control Starter Kit (MCSK) (DM330015)

This starter kit with mTouch sensing is a complete, integrated development platform based on the dsPIC33FJ16MC102. It includes a USB interfaced debugger/programmer, a complete drive circuit, an on-board BLDC motor, a user-configurable switch and an mTouch sensing slider with LED indicators for speed control.

dsPICDEM MCLV-2 Development Board (DM330021-2)

This low-voltage development board provides a cost-effective method of evaluating and developing sensored or sensorless Brushless DC (BLDC) motor and Permanent Magnet Synchronous Motor (PMSM) control applications. The board supports Microchip’s 100-pin PIM with dsPIC33E or dsPIC33F DSCs. This board supports the use of the internal, on-chip op amps found on certain dsPIC DSCs or the external op amps found on the MCLV-2 board. A dsPIC33EP256MC506 Internal Op Amp PIM (MA330031) is included. The board is capable of controlling motors rated up to 48V and 15 A, with multiple communication channels such as USB, CAN, LIN and RS-232.

dsPICDEM Motor Control Stepper Motor (MCSM) Development Board/Kit (DM330022/DV330021)

This board is targeted to control both unipolar and bipolar stepper motors in open-loop or closed-loop (current control) mode. The hardware is designed in such a way that no hardware changes are necessary for 8-, 6- or 4-wire stepper motors in either bipolar or unipolar configurations. Software to run motors in open-loop or closed-loop with full or variable microstepping is provided. A GUI for controlling step commands, motor parameter input, and operation modes is included. This flexible and cost-effective board can be configured in different ways for use with dsPIC33F motor control DSCs.

Microchip Motor Control Library Blockset

The Microchip Motor Control Library Blockset contains a number of basic Simulink® blocks that can be used to jump start model-based design of motor control applications using Microchip’s dsPIC33F and dsPIC33E DSC families. These blocks include reference frame transforms, a proportional-integral controller and trigonometric functions, all of which can be used with Embedded Coder® to generate efficient code on the dsPIC DSC that utilizes the Microchip Motor Control Library.

dsPICDEM MCHV-2 Development System (DM330023-2)

This high-voltage system is intended to aid the user in the rapid evaluation and development of a wide variety of motor control applications using a dsPIC DSC. This development system is targeted to control BLDC motors, PMSM and AC Induction Motors (ACIM) in sensor or sensorless operation. The rated continuous output current from the inverter is 6.5 A (RMS). This allows up to approximately 2 kVA output when running from a 208V to 230V single-phase input voltage.

Low-Voltage Motor Control Development Bundle (Single Board and Drive Board) (DV330100)

Provides a cost-effective method of evaluating and developing dual/single motor control to drive BLDC motors or PMSMs concurrently or one of each. The dsPIC DSC Signal Board supports both 3.3V and 5V operated devices for various applications and frequently used human interface features along with the communication ports. The Motor Control 10–24V Driver Board (Dual/Single) supports currents up to 10 A.

Motors

You can provide your own motor or purchase one of the motors used in our Application Notes which are guaranteed to run right out of the box:

- AC300024: 2-phase, 8-wire Stepper Motor
- AC300020: 24V BLDC Motor
- AC300022: 24V BLDC Motor with Shaft Encoder
- AC300023: 220V, AC Induction Motor

www.microchip.com/motor
16-bit Digital Power and Lighting Products

- Streamlined interoperation between PWM, ADC and CPU
- High-performance core with DSP instructions
 - High-speed control loop execution for demanding power conversion applications
 - Fast and predictable interrupts
- High-resolution PWMs for digital power
 - 1 ns for duty cycle, phase shift, period and dead time
 - Flexibility to control numerous power topologies
- Live update features
 - Update all of the firmware in an operating power supply while maintaining continuous regulation

Very fast ADCs optimized for digital power applications

Complete reference designs and algorithms including:
- AC/DC converter meeting platinum specification
- LLC resonant DC/DC converter
- Quarter brick DC/DC converter
- Solar micro inverter
- Interleaved power factor correction
- Offline UPS

Broad range of package sizes and types
- 18–100 pins, as small as 4 × 4 mm
- Robust packages to easy IPC-9592B qualification

Software and Application Notes

<table>
<thead>
<tr>
<th>Application Solution</th>
<th>AN #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Factor Correction in Power Conversion Applications Using the dsPIC® DSC</td>
<td>AN1106</td>
<td>This application note focuses primarily on the study, design and implementation of Power Factor Correction (PFC) using a Digital Signal Controller (DSC).</td>
</tr>
<tr>
<td>Switch Mode Power Supply (SMPS) Topologies (Part I)</td>
<td>AN1114</td>
<td>This application note explains the basics of different types of SMPS topologies and their applications. The pros and cons of different SMPS topologies are also explained to guide the user to select an appropriate topology for a given application, while providing useful information regarding selection of components for a given SMPS design.</td>
</tr>
<tr>
<td>Switch Mode Power Supply (SMPS) Topologies (Part II)</td>
<td>AN1207</td>
<td>This application note is the second of a two-part series on Switch Mode Power Supply (SMPS) topologies. This series expands on the previous material in Part I, and provides the basic tools needed to design a power converter.</td>
</tr>
<tr>
<td>Offline UPS Reference Design</td>
<td>AN1279</td>
<td>The application note describes the design of an Offline Uninterruptible Power Supply (UPS) using a Switch Mode Power Supply (SMPS) dsPIC Digital Signal Controller (DSC).</td>
</tr>
<tr>
<td>Digital Power Interleaved PFC Reference Design</td>
<td>AN1278</td>
<td>The application note describes the design of a Digital Power Interleaved PFC (IPFC) using a Switch Mode Power Supply (SMPS) dsPIC Digital Signal Controller (DSC).</td>
</tr>
<tr>
<td>Quarter Brick DC-DC Reference Design</td>
<td>AN1335</td>
<td>This application note describes the design of Quarter Brick DC-DC Reference Design using Switch Mode Power Supply (SMPS) dsPIC Digital Signal Controller (DSC)</td>
</tr>
<tr>
<td>DC-DC LLC Resonant Converter Reference Design</td>
<td>AN1336</td>
<td>This application note describes the design of DC-DC LLC Resonant Converter Reference Design using Switch Mode Power Supply (SMPS) dsPIC Digital Signal Controller (DSC)</td>
</tr>
<tr>
<td>Grid Connected Solar Microinverter</td>
<td>AN1338</td>
<td>This application note describes the design of Grid Connected Solar Microinverter Reference Design using Switch Mode Power Supply (SMPS) dsPIC Digital Signal Controller (DSC)</td>
</tr>
<tr>
<td>Platinum-rated AC/DC Reference Design Using the dsPIC DSC</td>
<td>AN1421</td>
<td>This application note presents a fully digital-controlled 720W AC-to-DC (AC/DC) power supply, which meets all CSCI Platinum Specifications, as well as provides a variety of additional, application-specific features and functions.</td>
</tr>
</tbody>
</table>

Featured Digital Power Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Pins</th>
<th>Flash (KB)</th>
<th>RAM (Bytes)</th>
<th>IC/OC</th>
<th>PS PWM</th>
<th>ADC</th>
<th>Analog Amps</th>
<th>Analog Compare</th>
<th>UART/I2C™/SPI</th>
<th>CAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsPIC33FJ64GS610</td>
<td>100</td>
<td>64</td>
<td>9 K</td>
<td>4/4</td>
<td>18</td>
<td>24 × 10-bit, 6 S/H</td>
<td>0</td>
<td>4</td>
<td>2/2/2</td>
<td>1</td>
</tr>
<tr>
<td>dsPIC33EP64GS506</td>
<td>64</td>
<td>64</td>
<td>8 K</td>
<td>4/4</td>
<td>10</td>
<td>22 × 12-bit, 5 S/H</td>
<td>2</td>
<td>4</td>
<td>2/2/2</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33EP64GS505</td>
<td>48</td>
<td>64</td>
<td>8 K</td>
<td>4/4</td>
<td>10</td>
<td>19 × 12-bit, 5 S/H</td>
<td>2</td>
<td>4</td>
<td>2/2/2</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33FJ16GS504</td>
<td>44</td>
<td>16</td>
<td>2 K</td>
<td>2/2</td>
<td>8</td>
<td>12 × 10-bit, 6 S/H</td>
<td>0</td>
<td>4</td>
<td>1/1/1</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33EP32GS504</td>
<td>44</td>
<td>32</td>
<td>4 K</td>
<td>4/4</td>
<td>10</td>
<td>19 × 12-bit, 5 S/H</td>
<td>2</td>
<td>4</td>
<td>2/2/2</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33FJ09GS302</td>
<td>28/36</td>
<td>9</td>
<td>1 K</td>
<td>1/1</td>
<td>6</td>
<td>8 × 10-bit, 3 S/H</td>
<td>0</td>
<td>2</td>
<td>1/1/1</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33EP64GS502</td>
<td>28</td>
<td>64</td>
<td>8 K</td>
<td>4/4</td>
<td>10</td>
<td>12 × 12-bit, 5 S/H</td>
<td>2</td>
<td>4</td>
<td>2/2/2</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33EP32GS202</td>
<td>28</td>
<td>16</td>
<td>2 K</td>
<td>1/1</td>
<td>6</td>
<td>12 × 12-bit, 3 S/H</td>
<td>2</td>
<td>2</td>
<td>1/1/1</td>
<td>0</td>
</tr>
<tr>
<td>dsPIC33FJ06GS001</td>
<td>18/20</td>
<td>6</td>
<td>256</td>
<td>0/0</td>
<td>4</td>
<td>6 × 10-bit, 2 S/H</td>
<td>0</td>
<td>2</td>
<td>0/1/0</td>
<td>0</td>
</tr>
</tbody>
</table>
Digital Power and Lighting Reference Designs and Development Boards

Reference Designs

Platinum Rated 720 W AC/DC Reference Design
This reference design demonstrates the flexibility of dsPIC DSCs in Switch Mode Power Supplies. This reference design has a peak efficiency of 94.1% and achieves the ENERGY STAR® CSCI Platinum Level. It features a 2-phase interleaved power factor correction boost converter followed by a 2-phase interleaved two-switch forward converter with synchronous rectification.

Quarter Brick DC/DC Converter Reference Design
This reference design provides an easy method to evaluate the performance and features of SMPS DSCs in high-density quarter brick DC-DC converters.

DC/DC LLC Resonant Converter Reference Design
This reference design operates over a wide input voltage range (350–420V DC) with a nominal input of 400V, providing a 12V DC output while maintaining high-voltage isolation between the primary and secondary. This reference design is implemented using a single dsPIC33F “GS” digital power DSC that provides full digital control of the power conversion and system management functions.

Digital Power Interleaved PFC Reference Design
This reference design provides an easy method to evaluate the power and features of the SMPS dsPIC DSCs for IPFC applications. It features a universal input voltage range and produces a single high-voltage DC output up to 350 W with low Total Harmonic Distortion (THD) of the input current.

Digital Pure Sine Wave Uninterruptible Power Supply (UPS) Reference Design
This reference design demonstrates how digital power techniques applied to UPS applications enable easy modifications through software and allow for the use of smaller magnetics, higher efficiency and reduction in audible and electrical noise via a purer sine-wave output, USB communication and reduce cost.

Grid Connected Solar Micro Inverter Reference Design
This reference design demonstrates maximum power point tracking for PV panel voltages between 20–45V DC and has a maximum output power of 215 W. High efficiency is achieved by implementing a novel interleaved active-clamp flyback topology with Zero Voltage Switching (ZVS).

Development Boards

MPLAB Starter Kit for Digital Power (DM330017-2)
This kit uses the dsPIC33EP64GS502 DSC to implement a buck converter and a boost converter. Each converter can drive its on-board MOSFET controlled resistive load or an external load. The board has an LCD display for voltage, current, temperature and fault conditions, and an integrated programmer/debugger, all powered by the included 9V power supply.

Digital LED Lighting Development Kit (DM330014)
The LED lighting development kit enables designers to quickly leverage the capabilities and performance of the dsPIC33 “GS” DSCs to create a 100% digitally controlled ballast function, while including advanced features such as dimming and color hue control. The dsPIC33 “GS” devices can support an entire system implementation for LED lighting products, including power-conversion circuits, such as AC-to-DC and DC-to-DC conversion, along with function such as Power Factor Corrections (PFC).

Tools and Libraries

Digital Compensator Design Tool (DCDT)
Use this free MPLAB X IDE plug-in to calculate optimum compensator coefficients for maximum performance, with support for five common compensator types. Use this plug-in to analyze system response as well as stability.

SMPS Compensator Library
Optimized functions for the dsPIC33 family of DSCs implementing common compensator algorithms such as 2P2Z, 3P3Z and PID. These library functions are designed to be used within an application framework for realizing an efficient and flexible way of implementing the control of an SMPS application.

The above tools can be downloaded from www.microchip.com/dsPIC33EP-GS.

Additional information for all reference designs is available at www.microchip.com/power.
Robust 3V Operation
With operating voltages as low as 1.8V and up to 3.6V, PIC24 MCUs and dsPIC33 DSCs ensure robust operation such as:

- POR/BOR/Watchdog Timer (WDT)
- Support for temperatures up to 150°C
- AEC-Q100 Grade 0 qualification for automotive applications

Enhanced Robustness with 5V Operation
Microchip’s PIC24 MCU and dsPIC33 DSC portfolios include some families that operate up to 5V for increased noise immunity and robustness. Devices with 5V operation provide more dynamic range for signals and improved sensitivity. The 5V devices include additional features to ensure robust operation such as:

- Backup system oscillator
- Windowed watchdog timer (WWDT)
- PWM with fault detection
- Support for temperatures up to 150°C
- AEC-Q100 Grade 0 qualification for automotive applications

Safety Critical Applications and Class B Certification
PIC24 MCUs and dsPIC33 DSCs include integrated safety features to ease implementation of IEC 60830 compliance for Class B safety.

The CRC provides a memory integrity check and many devices also include memory error correction. For example, dsPIC33 devices with Error-Correcting Code (ECC) include 2-bit error detection and single-bit error correction for enhanced reliability, completely transparent and real-time implementation.

The memory also has read/write protection capability to protect sections of memory from code flow changes or interrupt vectors. You can establish zones that have different permissions, and you can define secure areas that should not be entered without the proper permissions.

Products include a backup system oscillator for system redundancy as well as clock-fail detection. Features such as a windowed watchdog timer will detect and reset the MCU in event of code execution error, with a dedicated clock source independent of the system clock. A Dead-Man Timer (DMT), clocked from the main system clock, detects out of sequence execution. The PWMs include fault detection features and the CPU includes trap instructions and illegal opcode detection.

The certified Class B software stack helps to simplify IEC 60830 regulatory compliance. This library routines integrate into the MCU application to test and verify the critical functionalities without affecting the end application. For more information, visit www.microchip.com/classb.

Robust Package Options for IPC-9592B
Some dsPIC33 “GS” devices are available with robust package options to help with operation in extremely noise environments. These packages make it easier to achieve IPC-9592B qualification. Options include a 28-pin µQFN (4 × 4 mm) or 28-pin µQFN (6 × 6 mm). These package options are designed to withstand temperature cycling as defined in IPC-9592B with over 700 cycles of −40°C/+125°C on thick high-layer count PCBs.

Families with 5V Operation

<table>
<thead>
<tr>
<th></th>
<th>Flash</th>
<th>Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsPIC33 "EV" DSC Family</td>
<td>32–256 KB</td>
<td>28–64</td>
</tr>
<tr>
<td>PIC24F "KM" and “KA” MCU Family</td>
<td>8–32 KB</td>
<td>20–44</td>
</tr>
</tbody>
</table>

Extreme Temperatures and AEC-Q100 Qualification
Many devices are also rated for operation up to 125°C or 150°C ambient temperature for the most extreme automotive and industrial applications, including AEC-Q100 Grade 0 qualification.

Many target applications require operation in extreme environmental conditions. PIC24 MCUs and dsPIC33 DSCs have options for standard (85°C), extended temperature (125°C) and even high temperature up to 150°C.

For automotive applications, our products support AEC-Q100 Grade 0 level qualification for 150°C support, especially helpful for under-the-hood systems. Fore more information, visit www.microchip.com/hightemp.

<table>
<thead>
<tr>
<th>Temperature Ranges</th>
<th>Range</th>
<th>Part Number Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>−40 to 85°C</td>
<td>-I</td>
</tr>
<tr>
<td>Extended</td>
<td>−40 to 125°C</td>
<td>-E</td>
</tr>
<tr>
<td>High</td>
<td>−40 to 150°C</td>
<td>-H</td>
</tr>
</tbody>
</table>
Development and Evaluation Tools

A variety of hardware development boards are available for the PIC24 and dsPIC33 products, enabling you to shorten your design cycle and quickly develop prototypes. These boards are designed to allow easy connectivity to an MPLAB ICD 3 In-Circuit Debugger, MPLAB REAL ICE In-Circuit Emulator or MPLAB PM3 device programmer. Many also include integrated debugger and programmers. When combined with the MPLAB X IDE and the MPLAB XC16 Compiler, these development boards and starter kits allow you to quickly gain knowledge and experience using Microchip’s 16-bit MCU and dsPIC DSC products.

<table>
<thead>
<tr>
<th>Photo</th>
<th>Tool</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Explorer 16 Development Board](image) | Explorer 16 Development Board | DM240001 DM240002 | This development board offers an flexible way to evaluate the PIC24 MCU and dsPIC33 DSC families with modular PIMs to support various product families and a wide range of application daughter cards. Features on the Explorer 16 Board include:
- Processor PIMs
 - DM240001: Includes 100-pin PIMs PIC24FJ128GA010 and dsPIC33FJ256GP710
 - DM240002: Includes 44-pin PIMs PIC24FJ64GA004 and dsPIC33FJ32GP204
- Many other processor PIMs available for easy device evaluation
- PICtail Plus connector for expansion daughter boards
- Provide expansion for application-specific hardware
- Allow for the easy evaluation of software libraries
- Including USB, CAN, IrDA®, speech playback, graphics, Ethernet, ZigBee®, Wi-Fi®, and Bluetooth®
- Full documentation at www.microchip.com/explorer16 |
| ![Microsticks](image) | Microsticks | DM330013-2 DM240013-1 DM240013-2 | Microsticks are USB-powered and include an on-board debugger/programmer. The boards are fully supported by MPLAB® X IDE and provide easy plug in to a standard breadboard with access to device signals for prototyping. The Microstick II works with all 28-pin PIC24FJ and dsPIC33EP families. Microstick for 3V PIC24F K-series works with the PIC24F “KA” and “KL” families. Microstick for 5V PIC24F K-series works with the PIC24F “KM” family. |
| ![Intelligent Analog PIC24 Starter Kit](image) | Intelligent Analog PIC24 Starter Kit | DM240015 | This starter kit features the PIC24FJ128GC010 family with advanced integrated analog peripherals. The board includes an analog header, allowing clean signals to be accessed for easy prototyping. The board also includes sensors for light, touch and temperature as well as USB, potentiometer, microphone and headphone interface. Comprehensive demos are included as well as integrated programmer and debugger. |
| ![XLP 16-bit Development Board](image) | XLP 16-bit Development Board | DM240311 | This board is designed as a true platform for low power development, featuring the PIC24FJ16KA102, supporting other PIC24 XLP devices in 20- or 28-pin packages. It includes current measurement terminals for board or device level measurements and PICtail interface for expansion boards such as low-power wireless, SD/MMC, speech playback and more. The board is powered from AAA batteries, CR2032, energy harvesting, USB or a 9V supply. |
| ![LCD Explorer Development Board](image) | LCD Explorer Development Board | DM240314 | This development board supports 100-pin PIC® MCUs with eight common segmented LCD drivers. It ships with the PIC24FJ128GA310 and other families can be evaluated with different processor PIMs. In addition to the display, the board includes a PICtail Plus connector for daughter cards. It can be powered from USB, battery or 9V power supply, and includes VBat battery back-up. |
| ![dsPIC33EV 5V CAN-LIN Starter Kit](image) | dsPIC33EV 5V CAN-LIN Starter Kit | DM330018 | This USB-powered starter kit features the dsPIC33EV256GM106 with connections for CAN, LIN and SENT, as well as integrated programmer and debugger. |
| ![dsPIC33E USB Starter Kit](image) | dsPIC33E USB Starter Kit | DM330012 | This starter kit includes integrated programmer and debugger and expansion capability with the Multimedia Expansion Board or I/O Expansion Board. It comes with preloaded demonstration software to allow you to explore the features of the dsPIC33E DSC family including USB communication. |
| ![Motor Control Starter Kit](image) | Motor Control Starter Kit | DM330015 | This board includes a small 3-phase BLDC motor driven by dsPIC33FJ16MC102 motor control device and integrated programmer and debugger, powered by 9V power supply. This is a low-cost way to evaluate the motor control features on the dsPIC33 family and comes with full source code based on Application Note AN1160: Sensorless BLDC Control with Back-EMF Filtering Using a Majority Function. |
| ![Digital Power Starter Kit](image) | Digital Power Starter Kit | DM330017-2 | This board includes the dsPIC33EP64GS502 digital power conversion device to implement a DC/DC synchronous buck converter power stage and boost converter power stage. Each power stage includes a MOSFET controlled 5W resistive load. The board includes a display for voltage, current, temperature and fault conditions and integrated programmer and debugger, all powered by 9V power supply. |
| ![Graphics PIC24FJ256DA210 Development Board](image) | Graphics PIC24FJ256DA210 Development Board | DM240312 | This graphics development board is for developing colorful graphics displays with the PIC24FJ256DA210 family. The board includes touch pads, USB and a PICtail Plus connector for daughter cards. Match this board with your desired display size; it easily connects to the 3.2” Truly TFT Display (AC164127-4) or 4.3” PowerTFT TFT Display (AC164127-6) or Display Prototype Board (AC164139). |
Many software libraries, code examples and application notes are available to support the PIC24 MCUs and dsPIC33 DSCs. The table below includes some of the most popular software libraries and tools that help you jump start your application development.

<table>
<thead>
<tr>
<th>Software</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microchip Libraries for Applications (MLA)</td>
<td>MLA includes source code, drivers, demos, documentation and utilities. All PIC24 MCUs and dsPIC33 DSCs are supported.</td>
<td>www.microchip.com/mla</td>
</tr>
<tr>
<td></td>
<td>■ USB – including device, host and OTG support</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Graphics – including pre-made graphics objects, fonts, languages, images and display drivers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ File I/O Memory Disk Drive – transfer portable memory devices between and embedded system and a personal computer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Crypto Software – including AES, DES, 3DES, MD5, SHA-1, SHA-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Smart Card</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ MiWi™ Wireless Networking Protocol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ TCP-IP for Wi-Fi®</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Legacy versions of MLA are achieved and also include support for TCP/IP with Ethernet, touch or accessory framework for Android™.</td>
<td></td>
</tr>
</tbody>
</table>

| **16-bit CPU Self-Test Library** | The 16-bit CPU Self-Test Library allows you to verify during run-time, that all CPU core features are functioning correctly. | www.microchip.com/libraries |

Bootloaders	Several application notes and code examples exist to help with your bootloader applications.	AN1094 AN1157 CE417
	■ AN1094 describes UART-based bootloader with command line interface for dsPIC30F, dsPIC33F and PIC24FJ and PIC24H	
	■ AN1157 describes PIC24F family and includes a GUI for quick programming	
	■ CE417 code example for dsPIC33EP with aux Flash	
	■ USB bootloader included in the MLA USB stack	

| **Class B Safety Software Library** | Microchip has developed a library of low-level software routines that simplify meeting IEC 60730 requirements for Class B safety. Includes CPU register test, program counter test, variable memory test, Flash memory test and clock test. Certified by VBE. | www.microchip.com/classB AN1778 |

Code Examples	Hundred of code examples are ready to help you set-up peripherals and functions, sorted by product family:	www.microchip.com/codeexamples
	■ PIC24E and dsPIC33E code examples = CE4XX	
	■ PIC24F code examples = CE3XX	
	■ PIC24H code examples = CE2XX	
	■ dsPIC33F code examples = CE1XX	
	■ dsPIC30 code examples = CE0XX	

| **Data EEPROM Emulation** | For devices that do not have on-chip EEPROM, this algorithm increases endurance when emulating EEPROM with an on-chip Flash memory. | AN1095 |

| **Digital Filter Design** | The Digital Filter Design Tool makes designing and analyzing FIR and IIR filters easy. When the user enters frequency specifications, the tool automatically generates the filter code and coefficients. Graphical output windows provide the desired filter's characteristics. | www.microchip.com/SW300001 |

Digital Power	Several software libraries and tools are available for digital power applications.	www.microchip.com/power
	■ Includes Digital Power Compensator Libraries, optimized for use with dsPIC33 “GS” devices	
	■ Digital Compensator Design Tool helps calculate compensator coefficients for maximum performance	
	■ PMBus™ stack implements the PMBus protocol over PC™ communication interface	

| **dsPICworks Data Analysis** | dsPICworks Data Analysis allows you to evaluate and analyze DSP algorithms in both time and frequency domains. Includes signal generation and DSP functions such as FFT or DCT. | www.microchip.com/SW300021 |

| **Embedded Code Source** | Embedded Code Source is a collection of code, tools and utilities from Microchip and third party developers to help speed your design. | www.embeddedcodesource.com |

| **Fixed Point Math Library for PIC24 MCUs and dsPIC® DSCs** | This software library provides a set of speed-optimized functions for the most common digital signal processing applications. The I/O math library includes over 65 general-purpose functions composed of 26 functions support Q15 math and 37 functions supporting Q16 math. | www.microchip.com/libraries |

| **Floating Point Math Library for PIC24 MCUs and dsPIC DSCs** | The IEE-74-Compliant Floating Point Math Library is the compiled version of the math library that is distributed with the XC16 Compiler. It contains advanced single- and double-precision floating-point arithmetic and trigonometric functions from the standard C header file <math.h>. | www.microchip.com/libraries |

| **Motor Control** | This library includes the Motor Control Library for 3-phase control as well as MATLAB Simulink® Blockset and motor models, tuning guides, application notes and code examples. | www.microchip.com/motor |

| **XLP Battery Life Estimator** | This library estimates average current consumption and battery life. The utility allows users to select the target device, battery type, the application's operating conditions (such as voltage and temperature) and model the active and power-down times for their applications. | www.microchip.com/xlp |
Microchip’s Development Ecosystem

MPLAB X Integrated Development Environment (IDE)

MPLAB® X IDE

Windows® | Mac OS® | Linux®

Universal and Integrated Tool Set
MPLAB X IDE is a single, universal graphical user interface for Microchip and third party software and hardware development tools. It is the industry’s only IDE to support an entire portfolio of 8-bit, 16-bit and 32-bit PIC MCUs, dsPIC DSCs and memory devices.

Powerful Yet User-Friendly Interface
With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code-completion, context menus and a task navigator, MPLAB X IDE is flexible and friendly enough for new users.

Open-Source Platform
Based on the NetBeans™ Platform, MPLAB X IDE supports a host of free software components and plug-ins from the NetBeans community for high-performance application development customized to your needs.

Cross-Platform
Using MPLAB X IDE, users can run their favorite toolset and develop their next embedded application on Windows®, Linux® or Mac OS® X.

MPLAB XC16 Compiler for PIC24 MCUs and dsPIC DSCs
The MPLAB XC16 Compiler includes a complete ANSI C standard library, including string manipulation, dynamic memory allocation, data conversion, timekeeping and math libraries. The compiler has a powerful code optimizer. Other 16-bit MCU compilers generate as much as 165% larger code for the same application.

The assembler comes with the MPLAB XC Compiler and may be used with the compiler or as an assembler. It is a full-featured macro assembler. User defined macros, conditional assembly and a variety of assembler directives make the assembler a powerful code generation tool.

MPLAB Code Configurator (MCC)
MPLAB Code Configurator is a user-friendly plug-in that seamlessly integrates with your existing MPLAB X IDE to provide an easy setup and configuration experience with your chosen PIC MCU.

MPLAB Code Configurator offers a simple graphical representation of the selected PIC MCU and its on-chip peripherals and allows you to quickly arrange hardware peripherals into functional building blocks without an in-depth setup of registers or flags. The tool also displays package pins in both a graphical and tabular format, which makes pin and I/O configuration as easy as a mouse click.

MPLAB Code Configurator generates function and peripheral drivers in seamless, easy-to-understand C code for ultimate flexibility and portability. Its ease of use will help significantly reduce your software development time and get your product to market quicker.

Flexible
You can use it for simple configuration of your microcontroller in-system or to create complex functions with groups of integrated peripherals. Many PIC MCUs and their peripherals are supported, with new ones added regularly.

Intelligent
It can alert you of a potential pin or function conflict. It creates efficient code with a small memory footprint.

Easy to Use
Intuitive graphical user interface provides a visual representation of your selected PIC MCU, with an “aerial view” of the package. Pin selection and configuration is done via mouse click.

Saves Time
MPLAB Code Configurator generates simple, clearly documented APIs without the hassle of register-level setup. Its C code output can be easily modified for quick platform-level development. MCC is available as a plug-in for the free MPLAB X IDE. Learn more at www.microchip.com/MCC.
Compare 16-bit Families

<table>
<thead>
<tr>
<th>Features</th>
<th>PIC24 Families</th>
<th>dsPIC® DSC Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Low cost, lowest power, general purpose</td>
<td>High performance, general purpose</td>
</tr>
<tr>
<td>System Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPS</td>
<td>16 MIPS</td>
<td>40 MIPS</td>
</tr>
<tr>
<td>Pins</td>
<td>14–100</td>
<td>18–100</td>
</tr>
<tr>
<td>Flash Memory (KB)</td>
<td>4–256</td>
<td>12–256</td>
</tr>
<tr>
<td>SRAM (KB)</td>
<td>0.5–96</td>
<td>1–16</td>
</tr>
<tr>
<td>DMA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>BOR, LVD, POR, WDT</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Windowed WDT</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Deadman Timer (DMT)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>RTCC - Clock, Calendar, Alarm</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>CRC - Flash, RAM and SFR</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Class B Features</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Timers/PWMs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-bit and 32-bit Timers</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Input Capture</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Output Compare</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>16-bit PWM</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Multiple-Output Capture Compare PWM (MCCP) and Single-Outputs CCP (SCCP)</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Intelligent Analog</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC</td>
<td>10-bit @ 500 ksp</td>
<td>12-bit @ 200 ksp</td>
</tr>
<tr>
<td>DAC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Comparators</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Op Amps</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Charge Time Measurement Unit (CTMU)</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Core Independent Peripherals (CIP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crypto Engine with 256 b AES</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Configurable Logic Cells (CLC)</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Peripheral Trigger Generator (PTG)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Motor Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Control PWM with Flexible Modes</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Quadrature Encoder Interface (QEI)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Digital Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADCs with Multi-Million Samples Per Second</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Power Conversion PWM with 1 ns Resolution</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Low Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eXtreme Low Power (XLP)</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Vbat</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UART with LIN and IrDA®</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SPI</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>I²C™</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>USB - Device, Host, OTG</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>CAN</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Peripheral Pin Select (PPS)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Parallel Master Port (PMP)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Displays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segmented LCD Driver</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Graphical Display Driver</td>
<td>✓</td>
<td>–</td>
</tr>
</tbody>
</table>
16-bit Packages

20-lead QFN (MQ)
5 × 5 × 0.9 mm
(Lead Pitch: 0.65 mm)

28-lead QFN (MQ)
5 × 5 mm
(Lead Pitch: 0.65 mm)

28-lead QFN (MM & ML)
6 × 6 × 0.9 mm
(Lead Pitch: 0.65 mm)

44-lead QFN (ML)
8 × 8 × 0.65 mm
(Lead Pitch: 0.65 mm)

64-lead QFN (MR)
9 × 9 × 0.5 mm
(Lead Pitch: 0.5 mm)

28-lead UQFN (M6)
4 × 4 × 0.55 mm
(Lead Pitch: 0.4 mm)

28-lead UQFN (MX)
6 × 6 × 0.5 mm
(Lead Pitch: 0.4 mm)

48-lead UQFN (MV)
6 × 6 × 0.5 mm
(Lead Pitch: 0.4 mm)

20-lead SSOP (SS)
7.2 × 5.3 × 1.85 mm
(Lead Pitch: 0.65 mm)

28-lead SSOP (SS)
10.2 × 5.3 × 2 mm
(Lead Pitch: 0.65 mm)

14-lead TSSOP (ST)
5.0 × 4.4 × 1.2 mm
(Lead Pitch: 0.65 mm)

48-lead TQFP (PT)
7 × 7 × 0.12 mm
(Lead Pitch: 0.5 mm)

64-lead TQFP (PF)
14 × 14 × 1 mm
(Lead Pitch: 0.65 mm)

14-lead PDIP (P)
19 × 6.35 × 3.3 mm
(Lead Pitch: 0.1 inches)

18-lead PDIP (P)
22.81 × 7.95 × 3.3 mm
(Lead Pitch: 0.1 inches)

20-lead PDIP (P)
26.24 × 7.87 × 3.3 mm
(Lead Pitch: 0.1 inches)

28-lead SPDIP (SP)
34.67 × 7.87 × 3.3 mm
(Lead Pitch: 0.1 inches)

44-lead TQFP (PH)
16 × 16 × 1 mm
(Lead Pitch: 0.8 mm)

44-lead TQFP (PT)
10 × 10 × 1 mm
(Lead Pitch: 0.5 mm)

44-lead TQFP (PF)
14 × 14 × 1 mm
(Lead Pitch: 0.5 mm)

18-lead SOIC (SO)
11.53 × 7.5 × 2.31 mm
(Lead Pitch: 1.27 mm)

80-lead TQFP (PF)
14 × 14 × 1 mm
(Lead Pitch: 0.5 mm)

100-lead TQFP (PF)
14 × 14 × 1 mm
(Lead Pitch: 0.5 mm)

144-lead TQFP (PH)
16 × 16 × 1 mm
(Lead Pitch: 0.4 mm)

144-lead TQFP (PT)
20 × 20 × 0.8 mm
(Lead Pitch: 0.5 mm)

64-lead TQFP (MM & ML)
6 × 6 × 0.9 mm
(Lead Pitch: 0.65 mm)

44-lead QFN (ML)
6 × 6 × 0.9 mm
(Lead Pitch: 0.65 mm)

80-lead TQFP (PF)
12 × 12 × 1 mm
(Lead Pitch: 0.65 mm)

100-lead TQFP (PF)
12 × 12 × 1 mm
(Lead Pitch: 0.65 mm)

121-ball BGA (BG)
10 × 10 × 0.8 mm
(Lead Pitch: 0.8 mm)

48-lead UQFN (MV)
17.88 × 7.5 × 2.31 mm
(Lead Pitch: 1.27 mm)

144-lead LQFP (PL)
20 × 20 × 1.4 mm
(Lead Pitch: 0.5 mm)

64-lead TQFP (PF)
14 × 14 × 1 mm
(Lead Pitch: 0.65 mm)

28-lead UQFN (F)
12.80 × 7.5 × 2.31 mm
(Lead Pitch: 1.27 mm)

28-lead UQFN (MF)
10 × 10 × 1 mm
(Lead Pitch: 0.4 mm)

28-lead UQFN (F)
12 × 12 × 1 mm
(Lead Pitch: 0.65 mm)

28-lead UQFN (MF)
17 × 17 × 1 mm
(Lead Pitch: 0.65 mm)

144-lead LQFP (PL)
20 × 20 × 1.4 mm
(Lead Pitch: 0.5 mm)

Die/Wafer (WLCSP)

For more information about chipscale packaging options, please visit www.microchip.com/packaging.

Microchip Quick Web Links

16-bit MCUs and DSCs Home Page
www.microchip.com/16bit

Advanced Part Selector
www.microchip.com/maps

Application Notes
www.microchip.com/applicationnotes

Class B Safety Software
www.microchip.com/classb

Connectivity
www.microchip.com/connectivity

Datasheet Finder Tool
www.microchip.com/datasheets

Digital Power
www.microchip.com/power

eXtreme Low Power
www.microchip.com/xlp

Graphics
www.microchip.com/graphics

Hardware Crypto Engine
www.microchip.com/hardwarecrypto

High Temperature
www.microchip.com/hightemp

Intelligent Analog
www.microchip.com/intelligentanalog

Motor Control
www.microchip.com/motor

MPLAB Code Configurator
www.microchip.com/mcc

Segmented Displays
www.microchip.com/LCD

Software Libraries
www.microchip.com/libraries

Touch Sensing
www.microchip.com/mtouch

16-bit Embedded Control Solutions 19
Support
Microchip is committed to supporting its customers in developing products faster and more efficiently. We maintain a worldwide network of field applications engineers and technical support ready to provide product and system assistance. In addition, the following service areas are available at www.microchip.com:

- **Support** link provides a way to get questions answered fast: http://support.microchip.com
- **Sample** link offers evaluation samples of any Microchip device: http://sample.microchip.com
- **Forum** link provides access to knowledge base and peer help: http://forum.microchip.com
- **Buy** link provides locations of Microchip Sales Channel Partners: www.microchip.com/sales

Training
If additional training interests you, then Microchip can help. We continue to expand our technical training options, offering a growing list of courses and in-depth curriculum locally, as well as significant online resources – whenever you want to use them.

- Technical Training Centers and Other Resources: www.microchip.com/training
- MASTERS Conferences: www.microchip.com/masters
- Worldwide Seminars: www.microchip.com/seminars
- eLearning: www.microchip.com/webseminars

Sales Office Listing

AMERICAS

- **Atlanta**
 Tel: 678-957-9614
- **Austin**
 Tel: 512-257-3370
- **Boston**
 Tel: 774-760-0087
- **Chandler**
 Tel: 480-792-7200
- **Chicago**
 Tel: 630-285-0071
- **Cleveland**
 Tel: 216-447-0464
- **Dallas**
 Tel: 972-818-7423
- **Detroit**
 Tel: 248-538-2250
- **Houston**
 Tel: 281-894-5983
- **Indianapolis**
 Tel: 317-773-8323
- **Los Angeles**
 Tel: 949-462-9523
- **New York**
 Tel: 631-435-6000
- **San Jose**
 Tel: 408-735-9110
- **Toronto**
 Tel: 905-673-0699

EUROPE

- **Austria** - Wels
 Tel: 43-7242-2244-39
- **Denmark** - Copenhagen
 Tel: 45-4450-2828
- **France** - Paris
 Tel: 33-1-69-53-63-20
- **Germany** - Dusseldorf
 Tel: 49-2129-3766400
- **Germany** - Munich
 Tel: 49-89-627-144-0
- **Germany** - Pforzheim
 Tel: 49-7231-424750
- **Italy** - Milan
 Tel: 39-0331-742611
- **Italy** - Venice
 Tel: 39-049-7625286
- **Netherlands** - Drunen
 Tel: 31-416-690399
- **Poland** - Warsaw
 Tel: 48-22-3325737
- **Spain** - Madrid
 Tel: 34-91-708-08-90
- **Sweden** - Stockholm
 Tel: 46-8-5090-4654
- **UK** - Wokingham
 Tel: 44-118-921-5800

ASIA/PACIFIC

- **Australia** - Sydney
 Tel: 61-2-9868-6733
- **China** - Beijing
 Tel: 86-10-8569-7000
- **China** - Chengdu
 Tel: 86-28-8665-5511
- **China** - Chongqing
 Tel: 86-23-8980-9588
- **China** - Dongguan
 Tel: 86-769-8702-9880
- **China** - Hangzhou
 Tel: 86-571-87928115
- **China** - Hong Kong SAR
 Tel: 852-2943-5100
- **China** - Nanjing
 Tel: 86-25-8473-2460
- **China** - Qingdao
 Tel: 86-532-8502-7355
- **China** - Shanghai
 Tel: 86-21-5407-5533
- **China** - Shenzhen
 Tel: 86-755-8864-2200
- **China** - Wuhan
 Tel: 86-27-5980-5300
- **China** - Xiamen
 Tel: 86-592-2388138
- **China** - Xi’an
 Tel: 86-29-8833-7252
- **China** - Zhuhai
 Tel: 86-756-3210040

ASIA/PACIFIC

- **India** - Bangalore
 Tel: 91-80-3090-4444
- **India** - New Delhi
 Tel: 91-11-4160-8631
- **India** - Pune
 Tel: 91-20-3019-1500
- **Japan** - Osaka
 Tel: 81-6-6152-7160
- **Japan** - Tokyo
 Tel: 81-3-6880-3770
- **Korea** - Daegu
 Tel: 82-53-744-4301
- **Korea** - Seoul
 Tel: 82-2-554-7200
- **Malaysia** - Kuala Lumpur
 Tel: 60-3-6201-9857
- **Malaysia** - Penang
 Tel: 60-4-227-8870
- **Philippines** - Manila
 Tel: 63-2-634-9065
- **Singapore**
 Tel: 65-6334-8870
- **Taiwan** - Hsin Chu
 Tel: 886-3-5778-366
- **Taiwan** - Kaohsiung
 Tel: 886-7-213-7828
- **Taiwan** - Taipei
 Tel: 886-2-2508-8600
- **Thailand** - Bangkok
 Tel: 66-2-694-1351

Information subject to change. The Microchip name and logo, the Microchip logo, dsPIC, IRDA, MPLAB and PIC are registered trademarks and dsPICDEM, MIWI, PICtail, REAL ICE and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. mTouch is a registered trademark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2015, Microchip Technology Incorporated. All Rights Reserved.
Printed in the U.S.A. 6/15
DS00001032N